Arduino Satellite Tracker Rotor

Christian Pack Team 66

Problem Definition and Background

- Antenna and satellite communication relies on clear access to the Electromagnetic Waves that are transmitted and received.
- On-ground antennas require adjusting orientation towards objects orbiting within Low Earth Orbit.

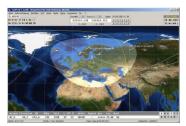
Requirements and Specifications

Antenna Rotor

 Design an antenna rotor device that utilizes an Arduino Uno paired with Satellite Tracking software.

Portable Use

 Use plastic box to house components to enable compact, portable usage.


Communicate Information

- Display important information on an LCD:
 - Azimuth and Elevation Positions
 - Desired Tracked Satellite
 - Current Time

Technical Approach

Communication

SatPC32

Arduino Uno Microcontroller

Orientation Control



Servo Motor

Stepper Motor + ULN2003 Motor Driver

Display Information

Liquid Crystal Display + 10K Ohm
Potentiometer

Additional Pieces

Compass

Plastic Container

Power Supply Module


Design Decision Identification

1. Satellite Tracking:

SatPC32 utilizes orbital perturbation models to track satellites.

Calculates elevation and azimuth orientation based off user's coordinates.

Outputs commands through serial COM port.

2. Data Manipulation:

Arduino sketch's general operation:

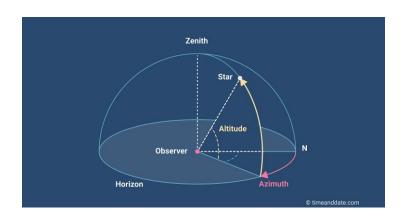
- Interpret serial port and store Az./El. as variables.
- 2. Control stepper motor (Azimuth)
- 3. Control servo motor (Elevation)
- 4. Display information such as current SAT and time.

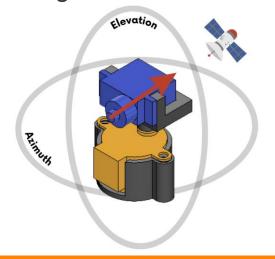
3. Orientation Control:

Rotor must orient along two axes: azimuth and elevation.

3 possible axes controls:

- 1. Servo + Servo
- 2. Stepper + Servo
- 3. Stepper + Stepper (Ideal)

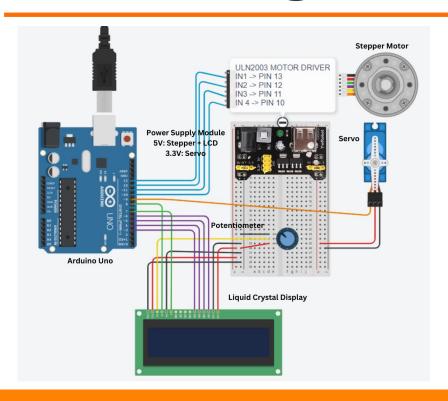



Orientation Control

 Azimuth: Stepper Motor has 2048 steps which prevents angle error at large distances. 360 degrees is now mapped to 2048.

Elevation: Servo motor has 0-to-180-degree control over antenna

orientation.



Fusion360 Rotor Mockup

Circuit Diagram

Unit can be powered one of two ways:

- Elegoo 9V AC Adapter (outlet required)
- 2. Battery Pack with 9V Connector (for mobile use)

AA Battery Pack


Assembled Project

https://www.youtube.c om/watch?v=jSG6fBYsq fE&ab_channel=Christi anPack

Project Evaluation

- Project was a success in determining location of satellite passing by.
- Antenna rotor was tested with multiple satellites for relative accuracy.

Future Improvements

- Modified with battery pack for mobile use.
- Improve enclosure appeal and cohesiveness.
- Model antenna that encapsulates rotor for appropriate look.
- Display current time; if N/A, display next pass time.

Conclusion

Arduino Satellite Tracker can successfully provide corrected access to satellite's passing overhead.

